If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x=961
We move all terms to the left:
x^2+20x-(961)=0
a = 1; b = 20; c = -961;
Δ = b2-4ac
Δ = 202-4·1·(-961)
Δ = 4244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4244}=\sqrt{4*1061}=\sqrt{4}*\sqrt{1061}=2\sqrt{1061}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{1061}}{2*1}=\frac{-20-2\sqrt{1061}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{1061}}{2*1}=\frac{-20+2\sqrt{1061}}{2} $
| 12=3/5d | | (x+4)=16-2x | | 0.50+35x=52 | | 0.35x+0.10(230-x)=36.75 | | 70+71+39t=180 | | 5p+20p+30=180 | | 66+2c+4c=180 | | 2w+2w+36=180 | | 44+2u+2u=180 | | 5(2x+7)+(7x-2)=65 | | 5p+17p+48=180 | | 0.02(12c-90)=-0.6(c-4) | | 2a+75+43=180 | | 2t+4t+30=180 | | 2t+64+44=180 | | 4t-5=2t+13 | | 0.03(2c-76)=-0.6(c-5) | | 2-1/3(3-2x)=5 | | 16v+34+50=180 | | -2x7= | | 2x-11+11=87=11 | | -34=2v+2(v+3) | | X-0.3x=83 | | 6c-52.9=31.9 | | -28=7(u-8)+7u | | 6-3x-2x^2=0 | | 2x+1/3=10/3 | | 6x-35=0 | | 1x+-3x=4 | | 6.2/(2x+1)=2(1)/(3)/4 | | -136=-6-10(x+3 | | −31=−39−8y |